Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chemistry ; 30(23): e202400579, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38350020

RESUMEN

Efficient tools for controlling molecular functions with exquisite spatiotemporal resolution are much in demand to investigate biological processes in living systems. Here we report an easily synthesized caged dexamethasone for photo-activating cytoplasmic proteins fused to the glucocorticoid receptor. In the dark, it is stable in vitro as well as in vivo in both zebrafish (Danio rerio) and Xenopus sp, two significant models of vertebrates. In contrast, it liberates dexamethasone upon UV illumination, which has been harnessed to interfere with developmental steps in embryos of these animals. Interestingly, this new system is biologically orthogonal to the one for photo-activating proteins fused to the estrogen ERT receptor, which brings great prospect for activating two distinct proteins down to the single cell level.

2.
Nat Struct Mol Biol ; 30(8): 1105-1118, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37488355

RESUMEN

In mammals, only the zygote and blastomeres of the early embryo are totipotent. This totipotency is mirrored in vitro by mouse '2-cell-like cells' (2CLCs), which appear at low frequency in cultures of embryonic stem cells (ESCs). Because totipotency is not completely understood, we carried out a genome-wide CRISPR knockout screen in mouse ESCs, searching for mutants that reactivate the expression of Dazl, a gene expressed in 2CLCs. Here we report the identification of four mutants that reactivate Dazl and a broader 2-cell-like signature: the E3 ubiquitin ligase adaptor SPOP, the Zinc-Finger transcription factor ZBTB14, MCM3AP, a component of the RNA processing complex TREX-2, and the lysine demethylase KDM5C. All four factors function upstream of DPPA2 and DUX, but not via p53. In addition, SPOP binds DPPA2, and KDM5C interacts with ncPRC1.6 and inhibits 2CLC gene expression in a catalytic-independent manner. These results extend our knowledge of totipotency, a key phase of organismal life.


Asunto(s)
Factores de Transcripción , Cigoto , Ratones , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Madre Embrionarias/metabolismo , Genoma , Células Madre Embrionarias de Ratones/metabolismo , Mamíferos/genética
3.
J Cell Sci ; 136(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37345489

RESUMEN

One presenilin gene (PSEN) is expressed in the sea urchin embryo, in the vegetal pole of the gastrula and then mainly in cilia cells located around the digestive system of the pluteus, as we recently have reported. PSEN expression must be accurately regulated for correct execution of these two steps of development. While investigating PSEN expression changes in embryos after expansion of endoderm with LiCl or of ectoderm with Zn2+ by whole-mount in situ hybridization (WISH) and quantitative PCR (qPCR), we detected natural antisense transcription of PSEN. We then found that Endo16 and Wnt5, markers of endo-mesoderm, and of Hnf6 and Gsc, markers of ectoderm, are also sense and antisense transcribed. We discuss that general gene expression could depend on both sense and antisense transcription. This mechanism, together with the PSEN gene, should be included in gene regulatory networks (GRNs) that theorize diverse processes in this species. We suggest that it would also be relevant to investigate natural antisense transcription of PSEN in the field of Alzheimer's disease (AD) where the role of human PSEN1 and PSEN2 is well known.


Asunto(s)
Presenilinas , Erizos de Mar , Humanos , Animales , Presenilinas/genética , Hibridación in Situ , Expresión Génica , Erizos de Mar/genética , Regulación del Desarrollo de la Expresión Génica
4.
Molecules ; 27(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36234767

RESUMEN

The zebrafish is one of the most widely adopted animal models in both basic and translational research. This popularity of the zebrafish results from several advantages such as a high degree of similarity to the human genome, the ease of genetic and chemical perturbations, external fertilization with high fecundity, transparent and fast-developing embryos, and relatively low cost-effective maintenance. In particular, body translucency is a unique feature of zebrafish that is not adequately obtained with other vertebrate organisms. The animal's distinctive optical clarity and small size therefore make it a successful model for optical modulation and observation. Furthermore, the convenience of microinjection and high embryonic permeability readily allow for efficient delivery of large and small molecules into live animals. Finally, the numerous number of siblings obtained from a single pair of animals offers large replicates and improved statistical analysis of the results. In this review, we describe the development of opto-chemical tools based on various strategies that control biological activities with unprecedented spatiotemporal resolution. We also discuss the reported applications of these tools in zebrafish and highlight the current challenges and future possibilities of opto-chemical approaches, particularly at the single cell level.


Asunto(s)
Pez Cebra , Animales , Humanos , Microinyecciones
5.
Nanoscale ; 14(42): 15760-15771, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36239706

RESUMEN

Persistent luminescence nanoparticles (PLNPs) are attracting growing interest for non-invasive optical imaging of tissues with a high signal to noise ratio. PLNPs can emit a persistent luminescence signal through the tissue transparency window for several minutes, after UV light excitation before systemic administration or directly in vivo through visible irradiation, allowing us to get rid of the autofluorescence signal of tissues. PLNPs constitute a promising alternative to the commercially available optical near infrared probes thanks to their versatile functionalization capabilities for improvement of the circulation time in the blood stream. Nevertheless, while biodistribution for a short time is well known, the long-term fate and toxicity of the PLNP's inorganic core after injection have not been dealt with in depth. Here we extend the current knowledge on ZnGa1.995O4Cr0.005 NPs (or ZGO) with a one-year follow-up of their fate after a single systemic administration in mice. We investigated the organ tissue uptake of ZGO with two different coatings and determined their intracellular processing up to one year after injection. The biopersistence of ZGO was assessed, with a long-term retention, quantified by ICP-MS, mostly in the liver and spleen, parallel with a loss of their luminescence properties. The analysis of the toxicity related to combining an animal's weight, key hematological and metabolic markers, histological observations of liver tissues and quantification of the expression of 31 genes linked to different metabolic reactions did not reveal any signs of noxiousness, from the macro scale to the molecular level. Therefore, the ZGO imaging probe has been proven to be a safe and relevant candidate for preclinical studies, allowing its long term use without any in vivo disturbance of the general metabolism.


Asunto(s)
Luminiscencia , Nanopartículas , Ratones , Animales , Distribución Tisular , Estudios de Seguimiento , Nanopartículas/toxicidad , Imagen Óptica
6.
Harmful Algae ; 117: 102285, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35944963

RESUMEN

Cyanobacterial blooms can modify the dynamic of aquatic ecosystems and have harmful consequences for human activities. Moreover, cyanobacteria can produce a variety of cyanotoxins, including microcystins, but little is known about the role of environmental factors on the prevalence of microcystin producers in the cyanobacterial bloom dynamics. This study aimed to better understand the success of Planktothrix in various environments by unveiling the variety of strategies governing cell responses to sudden changes in light intensity and temperature. The cellular responses (photosynthesis, photoprotection, heat shock response and metabolites synthesis) of four Planktothrix strains to high-light or high-temperature were studied, focusing on how distinct ecotypes (red- or green-pigmented) and microcystin production capability affect cyanobacteria's ability to cope with such abiotic stimuli. Our results showed that high-light and high-temperature impact different cellular processes and that Planktothrix responses are heterogeneous, specific to each strain and thus, to genotype. The ability of cyanobacteria to cope with sudden increase in light intensity and temperature was not related to red- or green-pigmented ecotype or microcystin production capability. According to our results, microcystin producers do not cope better to high-light or high-temperature and microcystin content does not increase in response to such stresses.


Asunto(s)
Cianobacterias , Planktothrix , Cianobacterias/fisiología , Ecosistema , Genotipo , Humanos , Temperatura
7.
Cells ; 11(15)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35892595

RESUMEN

During vertebrate development, embryonic cells pass through a continuum of transitory pluripotent states that precede multi-lineage commitment and morphogenesis. Such states are referred to as "refractory/naïve" and "competent/formative" pluripotency. The molecular mechanisms maintaining refractory pluripotency or driving the transition to competent pluripotency, as well as the cues regulating multi-lineage commitment, are evolutionarily conserved. Vertebrate-specific "Developmental Potential Guardians" (vsDPGs; i.e., VENTX/NANOG, POU5/OCT4), together with MEK1 (MAP2K1), coordinate the pluripotency continuum, competence for multi-lineage commitment and morphogenesis in vivo. During neurulation, vsDPGs empower ectodermal cells of the neuro-epithelial border (NEB) with multipotency and ectomesenchyme potential through an "endogenous reprogramming" process, giving rise to the neural crest cells (NCCs). Furthermore, vsDPGs are expressed in undifferentiated-bipotent neuro-mesodermal progenitor cells (NMPs), which participate in posterior axis elongation and growth. Finally, vsDPGs are involved in carcinogenesis, whereby they confer selective advantage to cancer stem cells (CSCs) and therapeutic resistance. Intriguingly, the heterogenous distribution of vsDPGs in these cell types impact on cellular potential and features. Here, we summarize the findings about the role of vsDPGs during vertebrate development and their selective advantage in evolution. Our aim to present a holistic view regarding vsDPGs as facilitators of both cell plasticity/adaptability and morphological innovation/variation. Moreover, vsDPGs may also be at the heart of carcinogenesis by allowing malignant cells to escape from physiological constraints and surveillance mechanisms.


Asunto(s)
Células Madre Pluripotentes , Animales , Carcinogénesis/metabolismo , Diferenciación Celular/fisiología , Cresta Neural , Células Madre Pluripotentes/metabolismo , Vertebrados
9.
Commun Biol ; 5(1): 113, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132142

RESUMEN

Somitogenesis, the segmentation of the antero-posterior axis in vertebrates, is thought to result from the interactions between a genetic oscillator and a posterior-moving determination wavefront. The segment (somite) size is set by the product of the oscillator period and the velocity of the determination wavefront. Surprisingly, while the segmentation period can vary by a factor three between 20 °C and 32 °C, the somite size is constant. How this temperature independence is achieved is a mystery that we address in this study. Using RT-qPCR we show that the endogenous fgf8 mRNA concentration decreases during somitogenesis and correlates with the exponent of the shrinking pre-somitic mesoderm (PSM) size. As the temperature decreases, the dynamics of fgf8 and many other gene transcripts, as well as the segmentation frequency and the PSM shortening and tail growth rates slows down as T-Tc (with Tc = 14.4 °C). This behavior characteristic of a system near a critical point may account for the temperature independence of somitogenesis in zebrafish.


Asunto(s)
Embrión no Mamífero/metabolismo , Desarrollo Embrionario/fisiología , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Animales , Desarrollo Embrionario/genética , Factor 8 de Crecimiento de Fibroblastos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra , p-Aminoazobenceno/análogos & derivados , p-Aminoazobenceno/farmacología
10.
Traffic ; 23(1): 63-80, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34729868

RESUMEN

Lipid droplets (LDs) are involved in viral infections, but exactly how remains unclear. Here, we study the hepatitis C virus (HCV) whose core capsid protein binds to LDs but is also involved in the assembly of virions at the endoplasmic reticulum (ER) bilayer. We found that the amphipathic helix-containing domain of core, D2, senses triglycerides (TGs) rather than LDs per se. In the absence of LDs, D2 can bind to the ER membrane but only if TG molecules are present in the bilayer. Accordingly, the pharmacological inhibition of the diacylglycerol O-acyltransferase enzymes, mediating TG synthesis in the ER, inhibits D2 association with the bilayer. We found that TG molecules enable D2 to fold into alpha helices. Sequence analysis reveals that D2 resembles the apoE lipid-binding region. Our data support that TG in LDs promotes the folding of core, which subsequently relocalizes to contiguous ER regions. During this motion, core may carry TG molecules to these regions where HCV lipoviroparticles likely assemble. Consistent with this model, the inhibition of Arf1/COPI, which decreases LD surface accessibility to proteins and ER-LD material exchange, severely impedes the assembly of virions. Altogether, our data uncover a critical function of TG in the folding of core and HCV replication and reveals, more broadly, how TG accumulation in the ER may provoke the binding of soluble amphipathic helix-containing proteins to the ER bilayer.


Asunto(s)
Retículo Endoplásmico , Hepatitis C , Retículo Endoplásmico/metabolismo , Hepacivirus/fisiología , Hepatitis C/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Triglicéridos/metabolismo , Proteínas del Núcleo Viral/metabolismo
11.
Commun Biol ; 4(1): 1083, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526657

RESUMEN

Fluorescence-free micro-manipulation of nucleic acids (NA) allows the functional characterization of DNA/RNA processing proteins, without the interference of labels, but currently fails to detect and quantify their binding. To overcome this limitation, we developed a method based on single-molecule force spectroscopy, called kinetic locking, that allows a direct in vitro visualization of protein binding while avoiding any kind of chemical disturbance of the protein's natural function. We validate kinetic locking by measuring accurately the hybridization energy of ultrashort nucleotides (5, 6, 7 bases) and use it to measure the dynamical interactions of Escherichia coli/E. coli RecQ helicase with its DNA substrate.


Asunto(s)
Escherichia coli/metabolismo , RecQ Helicasas/metabolismo , Imagen Individual de Molécula/métodos , Cinética , Unión Proteica
12.
Methods Mol Biol ; 2281: 93-115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33847954

RESUMEN

The ability of magnetic tweezers to apply forces and measure molecular displacements has resulted in its extensive use to study the activity of enzymes involved in various aspects of nucleic acid metabolism. These studies have led to the discovery of key aspects of protein-protein and protein-nucleic acid interaction, uncovering dynamic heterogeneities that are lost to ensemble averaging in bulk experiments. The versatility of magnetic tweezers lies in the possibility and ease of tracking multiple parallel single-molecule events to yield statistically relevant single-molecule data. Moreover, they allow tracking both fast millisecond dynamics and slow processes (spanning several hours). In this chapter, we present the protocols used to study the interaction between E. coli SSB, single-stranded DNA (ssDNA), and E. coli RecQ helicase using magnetic tweezers. In particular, we propose constant force and force modulation assays to investigate SSB binding to DNA, as well as to characterize various facets of RecQ helicase activity stimulation by SSB.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , RecQ Helicasas/metabolismo , Imagen Individual de Molécula/instrumentación , Proteínas de Unión al ADN/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Fenómenos Magnéticos , Unión Proteica , Factores de Tiempo
13.
Sci Adv ; 7(6)2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33547081

RESUMEN

While crucial for force spectroscopists and microbiologists, three-dimensional (3D) particle tracking suffers from either poor precision, complex calibration, or the need of expensive hardware, preventing its massive adoption. We introduce a new technique, based on a simple piece of cardboard inserted in the objective focal plane, that enables simple 3D tracking of dilute microparticles while offering subnanometer frame-to-frame precision in all directions. Its linearity alleviates calibration procedures, while the interferometric pattern enhances precision. We illustrate its utility in single-molecule force spectroscopy and single-algae motility analysis. As with any technique based on back focal plane engineering, it may be directly embedded in a commercial objective, providing a means to convert any preexisting optical setup in a 3D tracking system. Thanks to its precision, its simplicity, and its versatility, we envision that the technique has the potential to enhance the spreading of high-precision and high-throughput 3D tracking.

14.
Sci Rep ; 9(1): 19696, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873127

RESUMEN

Energy imbalance due to excess of calories is considered to be a major player in the current worldwide obesity pandemic and could be accompanied by systemic and central inflammation and mitochondrial dysfunctions. This hypothesis was tested by comparing the wild-derived diet-induced obesity- (DIO-) resistant mouse strain WSB/EiJ to the obesity-prone C57BL/6J strain. We analysed circulating and hypothalamic markers of inflammatory status and hypothalamic mitochondrial activity in both strains exposed to high-fat diet (HFD). We further analysed the regulations of hypothalamic genes involved in inflammation and mitochondrial pathways by high throughput microfluidic qPCR on RNA extracted from laser micro-dissected arcuate (ARC) and paraventricular (PVN) hypothalamic nuclei. HFD induced increased body weight gain, circulating levels of leptin, cholesterol, HDL and LDL in C57BL/6J whereas WSB/EiJ mice displayed a lower inflammatory status, both peripherally (lower levels of circulating cytokines) and centrally (less activated microglia in the hypothalamus) as well as more reactive mitochondria in the hypothalamus. The gene expression data analysis allowed identifying strain-specific hypothalamic metabolic pathways involved in the respective responses to HFD. Our results point to the involvement of hypothalamic inflammatory and mitochondrial pathways as key factors in the control of energy homeostasis and the resistance to DIO.


Asunto(s)
Inflamación/metabolismo , Mitocondrias/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Animales , Citocinas/sangre , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Metabolismo Energético , Hipotálamo/metabolismo , Hipotálamo/patología , Inflamación/genética , Mediadores de Inflamación/metabolismo , Leptina/sangre , Metabolismo de los Lípidos , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Mitocondrias/patología , Dinámicas Mitocondriales , Obesidad/genética , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/patología , Especificidad de la Especie , Transcriptoma
15.
Methods Enzymol ; 624: 1-23, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31370925

RESUMEN

The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. While many of these approaches use a fusion between a light activatable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly and locally in a live organism. Here, we present the experimental details behind this approach.


Asunto(s)
Optogenética/métodos , Compuestos Policíclicos/química , Receptores de Estrógenos/genética , Activación Transcripcional , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Expresión Génica , Luz , Procesos Fotoquímicos , Receptores de Estrógenos/química , Pez Cebra/embriología
16.
J Mech Behav Biomed Mater ; 92: 11-23, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30654216

RESUMEN

The protective function of biological surfaces that are exposed to the exterior of living organisms is the result of a complex arrangement and interaction of cellular components. This is the case for the most external cornified layer of skin, the stratum corneum (SC). This layer is made of corneocytes, the elementary 'flat bricks' that are held together through adhesive junctions. Despite the well-known protective role of the SC under high mechanical stresses and rapid cell turnover, the subtleties regarding the adhesion and mechanical interaction among the individual corneocytes are still poorly known. Here, we explore the adhesion of single corneocytes at different depths of the SC, by pulling them using glass microcantilevers, and measuring their detachment forces. We measured their interplanar adhesion between SC layers, and their peripheral adhesion among cells within a SC layer. Both adhesions increased considerably with depth. At the SC surface, with respect to adhesion, the corneocyte population exhibited a strong heterogeneity, where detachment forces differed by more than one order of magnitude for corneocytes located side by side. The measured detachment forces indicated that in the upper-middle layers of SC, the peripheral adhesion was stronger than the interplanar one. We conclude that the stronger peripheral adhesion of corneocytes in the SC favors an efficient barrier which would be able to resist strong stresses.


Asunto(s)
Fenómenos Mecánicos , Piel/citología , Anisotropía , Fenómenos Biomecánicos , Humanos , Ensayo de Materiales
17.
Schizophr Bull ; 45(1): 247-255, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29471546

RESUMEN

The biological processes associated with the onset of schizophrenia remain largely unknown. Current hypotheses favor gene × environment interactions as supported by our recent report about DNA methylation changes during the onset of psychosis. Here, we conducted the first longitudinal transcriptomic analysis of blood samples from 31 at-risk individuals who later converted to psychosis and 63 at-risk individuals who did not. Individuals were followed for a maximum of 1 year. Blood samples were collected at baseline and at the end of follow-up and individuals served as their own controls. Differentially expressed genes between the 2 groups were identified using the RNA sequencing of an initial discovery subgroup (n = 15 individuals). The most promising results were replicated using high-throughput real-time qPCR in the whole cohort (n = 94 individuals). We identified longitudinal changes in 4 brain-expressed genes based on RNAseq analysis. One of these genes (CPT1A) was replicated in the whole cohort. The previously observed hypermethylation in NRP1 and GSTM5 during the onset of psychosis correlated with a decrease in corresponding gene expression. RNA sequencing also identified 2 co-expression networks that were impaired after conversion compared with baseline-the Wnt pathway including AKT1, CPT1A and semaphorins, and the Toll-like receptor pathway, related to innate immunity. This longitudinal study of transcriptomic changes in individuals with at-risk mental state revealed alterations during conversion to psychosis in pathways and genes relevant to schizophrenia. These results may be a first step toward better understanding psychosis onset. They may also help to identify new biomarkers and targets for disease-modifying therapeutic strategies.


Asunto(s)
Progresión de la Enfermedad , Trastornos Psicóticos/sangre , Trastornos Psicóticos/genética , Transcriptoma , Adolescente , Adulto , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estudios Longitudinales , Masculino , Síntomas Prodrómicos , ARN Mensajero , Riesgo , Análisis de Secuencia de ARN , Adulto Joven
18.
Environ Pollut ; 243(Pt B): 1867-1877, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30408875

RESUMEN

There is increasing evidence that toxicant exposure can alter DNA methylation profile, one of the main epigenetic mechanisms, particularly during embryogenesis when DNA methylation patterns are being established. In order to investigate the effects of the antibacterial agent Triclosan on DNA methylation and its correlation with gene expression, zebrafish embryos were exposed during 7 days post-fertilization (starting at maximum 8-cells stage) to 50 and 100 µg/l, two conditions for which increased sensitivity and acclimation have been respectively reported. Although global DNA methylation was not significantly affected, a total of 171 differentially methylated fragments were identified by Reduced Representation Bisulfite Sequencing. The majority of these fragments were found between the two exposed groups, reflecting dose-dependant specific responses. Gene ontology analysis revealed that pathways involved in TGF-ß signaling were enriched in larvae exposed to 50 µg/l, while de novo pyrimidine biosynthesis functions were overrepresented in fish exposed to 100 µg/l. In addition, gene expression analysis revealed a positive correlation between mRNA levels and DNA methylation patterns in introns, together with significant alterations of the transcription of genes involved in nervous system development, transcriptional factors and histone methyltransferases. Overall this work provides evidence that Triclosan alters DNA methylation in zebrafish exposed during embryogenesis as well as related genes expression and proposes concentration specific modes of action. Further studies will investigate the possible long-term consequences of these alterations, i.e. latent defects associated with developmental exposure and transgenerational effects, and the possible implications in terms of fitness and adaptation to environmental pollutants.


Asunto(s)
Antibacterianos/toxicidad , Metilación de ADN/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Triclosán/toxicidad , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Aclimatación/efectos de los fármacos , Animales , Exposición a Riesgos Ambientales , Epigénesis Genética/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
19.
Nucleic Acids Res ; 46(16): 8500-8515, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30053104

RESUMEN

Most RecQ DNA helicases share a conserved domain arrangement that mediates their activities in genomic stability. This arrangement comprises a helicase motor domain, a RecQ C-terminal (RecQ-C) region including a winged-helix (WH) domain, and a 'Helicase and RNase D C-terminal' (HRDC) domain. Single-molecule real-time translocation and DNA unwinding by full-length Escherichia coli RecQ and variants lacking either the HRDC or both the WH and HRDC domains was analyzed. RecQ operated under two interconvertible kinetic modes, 'slow' and 'normal', as it unwound duplex DNA and translocated on single-stranded (ss) DNA. Consistent with a crystal structure of bacterial RecQ bound to ssDNA by base stacking, abasic sites blocked RecQ unwinding. Removal of the HRDC domain eliminates the slow mode while preserving the normal mode of activity. Unexpectedly, a RecQ variant lacking both the WH and HRDC domains retains weak helicase activity. The inclusion of E. coli ssDNA-binding protein (SSB) induces a third 'fast' unwinding mode four times faster than the normal RecQ mode and enhances the overall helicase activity (affinity, rate, and processivity). SSB stimulation was, furthermore, observed in the RecQ deletion variants, including the variant missing the WH domain. Our results support a model in which RecQ and SSB have multiple interacting modes.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas de Escherichia coli/fisiología , Escherichia coli/enzimología , RecQ Helicasas/fisiología , Eliminación de Gen , Secuencias Invertidas Repetidas , Cinética , Modelos Moleculares , Pinzas Ópticas , Conformación Proteica , Dominios Proteicos , RecQ Helicasas/genética , Imagen Individual de Molécula
20.
Brain Sci ; 8(4)2018 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-29565275

RESUMEN

Astrocytes are the most abundant glial cells of the central nervous system and have recently been recognized as crucial in the regulation of brain immunity. In most neuropathological conditions, astrocytes are prone to a radical phenotypical change called reactivity, which plays a key role in astrocyte contribution to neuroinflammation. However, how astrocytes regulate brain immunity in healthy conditions is an understudied question. One of the astroglial molecule involved in these regulations might be Connexin 43 (Cx43), a gap junction protein highly enriched in astrocyte perivascular endfeet-terminated processes forming the glia limitans. Indeed, Cx43 deletion in astrocytes (Cx43KO) promotes a continuous immune recruitment and an autoimmune response against an astrocyte protein, without inducing any brain lesion. To investigate the molecular basis of this unique immune response, we characterized the polysomal transcriptome of hippocampal astrocytes deleted for Cx43. Our results demonstrate that, in the absence of Cx43, astrocytes adopt an atypical reactive status with no change in most canonical astrogliosis markers, but with an upregulation of molecules promoting immune recruitment, complement activation as well as anti-inflammatory processes. Intriguingly, while several of these upregulated transcriptional events suggested an activation of the γ-interferon pathway, no increase in this cytokine or activation of related signaling pathways were found in Cx43KO. Finally, deletion of astroglial Cx43 was associated with the upregulation of several angiogenic factors, consistent with an increase in microvascular density in Cx43KO brains. Collectively, these results strongly suggest that Cx43 controls immunoregulatory and angiogenic properties of astrocytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...